Quotient manifolds of flows

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submanifolds and Quotient Manifolds in Noncommutative Geometry

We define and study noncommutative generalizations of submanifolds and quotient manifolds, for the derivation-based differential calculus introduced by M. Dubois-Violette and P. Michor. We give examples to illustrate these definitions. L.P.T.H.E.-ORSAY 95/53 Laboratoire associé au Centre National de la Recherche Scientifique URA D0063

متن کامل

Generic flows on 3-manifolds

MSC (2010): 57R25 (primary); 57M20, 57N10, 57R15 (secondary). A 3-dimensional generic flow is a pair (M, v) with M a smooth compact oriented 3-manifold and v a smooth nowhere-zero vector field on M having generic behaviour along ∂M ; on the set of such pairs we consider the equivalence relation generated by topological equivalence (homeomorphism mapping oriented orbits to oriented orbits), and ...

متن کامل

Variational Beltrami flows over manifolds

We study, in this paper, the problem of denoising images/data which are defined over non-flat surfaces. This problem arises often in many medical imaging tasks. The Beltrami flow which was defined in an explicit-intrinsic manner is generalized here to non-flat surfaces and is defined in an implicit way. We formulate the flow in a variational way which is generalized to a scalar field defined ov...

متن کامل

Approximation Flows in Shape Manifolds

We consider manifolds of curves and surfaces which are controlled by certain systems of shape parameters. These systems may be given by the control points of a spline curve, the coefficients of an implicit equation, or other parameters controlling the shape. Each system of shape parameters corresponds to a chart of the manifold. In order to fit a curve or surface from such a manifold to given u...

متن کامل

Normalizing Flows on Riemannian Manifolds

We consider the problem of density estimation on Riemannian manifolds. Density estimation on manifolds has many applications in fluid-mechanics, optics and plasma physics and it appears often when dealing with angular variables (such as used in protein folding, robot limbs, gene-expression) and in general directional statistics. In spite of the multitude of algorithms available for density esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2017

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216517400053